
3018 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 5, MAY 2016

Bayesian Information Criterion for Source
Enumeration in Large-Scale Adaptive Antenna Array
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Abstract—Subspace-based high-resolution algorithms for
direction-of-arrival (DOA) estimation have been developed for
large-scale adaptive antenna arrays. However, its prerequisite
step, namely, source enumeration, has not yet been addressed. In
this paper, a new approach is devised in the framework of the
Bayesian information criterion (BIC) to provide reliable detection
of the signal source number for the general asymptotic regime,
where m,n → ∞ and m/n → c ∈ (0,∞), with m and n
being the numbers of antennas and snapshots, respectively. In
particular, the a posteriori probability is determined by correctly
calculating the LLFs and PFs for the general asymptotic case. By
means of the maximum a posteriori probability, we are capable
of effectively finding the signal number. An accurate closed-form
expression for the probability of missed detection is also derived
for the proposed BIC variant. In addition, the probability of
false alarm for the BIC detector is proved to converge to zero
as m,n→∞ and m/n→c. Simulation results are included to
demonstrate the superiority of the proposed detection approach
over state-of-the-art schemes and corroborate our theoretical
calculations.

Index Terms—Adaptive antenna array, Bayesian information
criterion (BIC), direction-of-arrival (DOA) estimation, source
enumeration.

I. INTRODUCTION

A S a promising technique to boost spectral efficiency, large-
scale adaptive antenna arrays have received much atten-

tion in the literature [1], [2]. As the array utilizes a large number
of antennas at the base station for transmission and reception,
the conventional subspace-based algorithms for direction-of-
arrival (DOA) estimation usually suffer serious performance
degradation in practice. This is because the subspace cannot
be correctly determined for the situation where the number of
antennas is comparable with the number of samples. To cope
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with the problem, more efficient subspace-based algorithms [3],
[4] have been suggested for the large array. Nevertheless, as
the prerequisite step of direction finding, source enumeration
has not yet been addressed for such a situation, which turns out
to be a big challenge, particularly at low signal-to-noise ratios
(SNRs) or small samples.

The conventional source enumeration methodologies vary
from hypothesis testing [5]–[8] to the information-theoretic
criterion (ITC) [9]–[11]. Basically, the hypothesis testing, in-
cluding the sphericity test [5] and the random matrix theory
(RMT)-based test [8], needs to find a subjective threshold for
decision making. It is shown in [8] that the RMT approach is
able to provide a detection threshold that is significantly smaller
than that of the classical minimum description length (MDL)
method [12]. Unlike the hypothesis testing, the ITCs, such as
Akaike’s information criterion (AIC) [9], Schwarz’s Bayesian
information criterion (BIC) [13], Rissanen’s MDL [14], and
Kay’s exponentially embedded family (EEF) [15], are derived
from the perspective of information theory, and no user-defined
parameter is needed. As a result, it is of considerable interest to
exploit the information criterion for efficient source enumera-
tion. Wax and Kailath [12] have employed the AIC and MDL to
enumerate independent signal sources. To handle coherent sig-
nals, Wax and Ziskind [16] have combined the maximum like-
lihood (ML) estimates of the DOAs with the MDL principle for
joint DOA estimation and source enumeration, ending up with
an enhanced MDL criterion for coherent source enumeration.
Valaee and Kabal [17] have proposed a predictive description
length (PDL) for this task. Although the PDL method can out-
perform the MDL approach [16], it requires much more com-
putational cost than the latter as the ML estimation is required
at each snapshot. Fishler and Poor [18] have reformulated the
MDL criterion for source enumeration under nonuniform noise
environment. Furthermore, they have proved the consistency of
their proposed MDL variant. On the other hand, Huang et al.
[19], [20] have developed MDL variants by using the filtered
component variances or minimum mean square errors of the
multistage Wiener filter rather than the sample eigenvalues
corrupted by the nonuniform noise, ending up with computa-
tionally simple and robust source enumerators.

Most of the aforementioned methods are devised by utilizing
the assumption that the number of antennas m is fixed while
the number of snapshots n tends to infinity, which is referred to
as the classical asymptotic regime. Indeed, the general asymp-
totic situation [21], where m,n→∞ and m/n→c ∈ (0,∞), is
more suitable to large-array applications since the number of an-
tennas can be as large as the number of snapshots. On the other
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hand, it has been pointed out in [3] that the general asymptotic
regime is able to provide a more accurate description for prac-
tical scenarios, where the number of snapshots and the number
of antennas are finite and probably comparable in magnitude. In
fact, the topics of DOA estimation and beamforming have been
dealt with in [3] and [22]–[24] for the general asymptotic regime.

Basically, the ITCs have their roots in the minimization of
the Kullback–Leibler (KL) information, but this minimization
is carried out in the scenario where the number of antennas is
fixed while the number of snapshots tends to infinity. This, in
turn, means that these ITCs cannot properly work in the general
asymptotic case. To enable the ITCs to properly detect the
source number in this condition, Nadakuditi and Edelman [25]
have devised the RMT-AIC criterion. Although the RMT-AIC is
argued to be able to correctly detect the source number for the
general asymptotic case, it cannot provide the consistent esti-
mate of the source number [8]. To solve the issue of linear re-
gression model order selection for small sample cases, variants
of the AIC approach have been proposed in [26] by means of
the asymptotic approximation of the bootstrap estimation of the
KL information. Nevertheless, it is nontrivial to apply them to
source enumeration for the large array. Therefore, it is consid-
erably interesting to investigate the consistent methodology for
source enumeration in the general asymptotic regime.

We would prefer a source enumerator that always selects the
true source number, provided that the number of snapshots is
large enough. It has been revealed in [12] that the BIC method
offers strong consistency, whereas the AIC approach does not.
As a result, the former has drawn much attention in the litera-
ture. The classical BIC criterion is composed of a likelihood
function (LF) and a penalty function (PF), which correspond to
data fitting and model complexity, respectively. Minimization
of the BIC criterion is, in fact, a procedure trading off data
fitting and model complexity, resulting in a correct estimate of
the model order or source number. As previously pointed out,
the existing BIC criterion does lead to the minimization of the
relative KL information between the generating model and the
fitted approximating model but only for the case in which m is
fixed while n → ∞. In the general asymptotic regime, however,
there is no guarantee that what the classical BIC criterion is
minimizing is exactly the relative KL divergence and that mini-
mization of the classical BIC criterion yields a correct estimate
of the source number. To circumvent this issue, we derive a
variant of the BIC criterion for the general asymptotic case, in
which m,n → ∞ and m/n → c. In particular, we reformulate
the BIC criterion by calculating the LF and PF in this general
asymptotic regime. Through appropriate approximations, we
are able to accurately determine the LF and the PF for the BIC
criterion, ending up with a new variant of the BIC criterion for
source enumeration. This enables us to precisely determine the
signal and noise subspaces for the subsequent DOA estimation
and beamforming in large arrays. Moreover, a closed-form
expression for the probability of missed detection is derived.
It is also proved that the probability of false alarm converges to
zero as m,n → ∞ and m/n → c.

The remainder of this paper is organized as follows. The data
model is presented in Section II. The method for source enume-
ration is proposed in Section III. Statistical performance analy-

sis is conducted in Section IV. Simulation results are presented
in Section V. Finally, conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

Consider an array of m antennas receiving d narrowband
source signals {s1(t), . . . , sd(t)} from distinct directions {ϕ1,
. . . , ϕd}, respectively. Assume that the sources and array are
in the same plane. In the sequel, the tth snapshot vector of the
array output is written as

xt = Ast +wt, (t = 1, . . . , n) (1)

where xt = [x1(t), . . . , xm(t)]T ∈ Cm×1, A = [a(ϕ1), . . . ,
a(ϕd)] ∈ Cm×d, st = [s1(t), . . . , sd(t)]

T ∈ Cd×1, and wt =
[w1(t), . . . , wm(t)]T ∈ Cm×1 are the observed snapshot vector,
the steering matrix, the signal vector, and the noise vec-
tor, respectively. Here, a(ϕi), i = 1, . . . , d, is the steering
vector, with ϕi being the DOA due to the ith source, (·)T is the
transpose operator, d is the unknown number of sources, m is
the number of antennas, and n is the number of snapshots. For
simplicity but without loss of generality, it is assumed that m <
n throughout this paper, unless stated otherwise. Moreover, the
number of sources is assumed to be fixed and smaller than a
constant number m̄, which is much less than min(m,n), i.e.,
m̄ � min(m,n), as m,n → with m/n → c. The incoherent
signals are independent and identically distributed (i.i.d.) com-
plex Gaussian distributed, i.e., st ∼ CN (0d,Rs), in which 0d

is the d× 1 zero vector, and Rs � E[sts
H
t ] ∈ Cd×d has full

rank, with (·)H being the conjugate transpose and E[·] being the
mathematical expectation. Here, CN (ν,R) stands for the com-
plex Gaussian distribution with mean ν and covariance R.
Furthermore, the noise wt is assumed to be an i.i.d. complex
Gaussian vector with mean zero and covariance τIm, i.e.,
wt ∼ CN (0m, τIm), where Im is the m×m identity matrix,
which is independent of the signals.

With thegiven assumptions, theobserved samplescan be taken
as the i.i.d. Gaussian vector, i.e., xt ∼ CN (0m,R), with R
being the population covariance matrix, which is calculated as

R = E
[
xtx

H
t

]
= ARsA

H + τIm. (2)

Recall that the signals are incoherent and d < m, which means
that Rs is nonsingular and that A is of full column rank. With-
out loss of generality, we assume that the population eigenval-
ues ofR, which are denoted as λ1, . . . , λm, are nonincreasingly
ordered, i.e.,

λ1 ≥ · · · ≥ λd ≥ λd+1 = · · · = λm = τ. (3)

In addition, their corresponding population eigenvectors are de-
noted as u1, . . . ,um. Given (3), it is straightforward to utilize
the multiplicity of τ to determine the number of signals. In prac-
tice, however, only the sample covariance matrix is accessible,
which is calculated by

R̂ =
1
n

n∑
t=1

xtx
H
t . (4)

Let �1,. . ., �m and e1,. . . ,em, be the descending eigenvalues and
corresponding eigenvectors of R̂, respectively. Consequently,
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our task in this work is to infer the source number d from the
noisy observations {x1, . . . ,xn} form,n → ∞ andm/n → c.

III. BAYESIAN INFORMATION CRITERION

FOR SOURCE ENUMERATION

A. BIC

For the i.i.d. complex Gaussian observations X = [x1, . . . ,
xn], the joint probability density function (pdf) is

f(X|θ) =
n∏

t=1

1
πm|R| exp

(
−xH

t R−1xt

)
(5)

where | · | is the determinant, and θ is the unknown parameter
vector of the true model, which is specifically given by θ =

[uT
1 , . . . ,u

T
d , λ1, . . . , λd, τ ]

T
. Suppose that we have a paramet-

ric family of pdf {f(X|θ(k))}m̄−1
k=0 with

f
(
X|θ(k)

)
=

n∏
t=1

1

πm
∣∣∣R(k)

∣∣∣ exp
(
−xH

t

[
R(k)

]−1

xt

)
(6)

where θ(k) = [uT
1 , . . . ,u

T
k , λ1, . . . , λk, τ ]

T
corresponds to the

kth candidate model. Let Hk be the hypothesis that the source
number is k ∈ [0, m̄− 1]. It is easy to see that the hypotheses
{Hk}m̄−1

k=0 are nested.
According to Bayes’ rule, we readily have

f(Hk|X) =
f(X|Hk)f(Hk)

f(X)
. (7)

Most typically, {Hk}m̄−1
k=0 are assumed to be uniformly dis-

tributed, yielding f(Hk) = 1/m̄. Moreover, notice that f(X)
is independent of k, which, when ignored, does not affect the
maximization of (7) with respect to k. As a result, we obtain
from (7) that

max
k∈[0,m̄−1]

f(Hk|X) = max
k∈[0,m̄−1]

f(X|Hk). (8)

It is indicated in (8) that maximization of the detection probabi-
lity under the hypothesis Hk is equivalent to finding the maxi-
mum a posteriori probability. It follows from [27] and [28] that
the a posteriori probability is computed as

f(Hk|X) =

∫
f
(
X, θ(k)

)
dθ(k)

=

∫
f
(
X|θ(k)

)
f
(
θ(k)
)
dθ(k) (9a)

≈ (2π)
νk
2 |Ĵ |− 1

2 f
(
X|θ̂(k)

)
f
(
θ̂
(k)
)

(9b)

where f(X, θ(k)) denotes the joint pdf of X and θ(k), f(θ(k))

denotes the a priori pdf of θ(k), θ̂
(k)

is the ML estimate of θ(k),
νk is the length of θ(k), and

Ĵ = −
∂2 log f

(
X|θ(k)

)
∂θ(k)∂

(
θ(k)
)H

∣∣∣∣∣∣∣
θ(k)=θ̂

(k)

∈ C
νk×νk (10)

is the Hessian matrix. Taking mathematical expectation of Ĵ
leads to the Fisher information matrix

J = −E

⎡
⎢⎣∂2 log f

(
X|θ(k)

)
∂θ(k)∂

(
θ(k)
)H

⎤
⎥⎦ . (11)

Note that, although [27] and [28] can arrive at the approxi-
mation in (9b), the former employs the assumption that the

a priori pdf of θ(k) is flat around θ̂
(k)

, which means that

f(θ(k)) ≈ f(θ̂
(k)

), whereas the latter utilizes Laplace’s method
[29] for integration. Taking the logarithm of (9b) yields

log f(Hk|X)

≈ log f
(
X|θ̂(k)

)
+ log f

(
θ̂
(k)
)
+

νk
2

log 2π − 1
2
log |Ĵ |

=log f
(
X|θ̂(k)

)
+log f

(
θ̂
(k)
)
+
νk
2

log 2π− 1
2
log

∣∣∣∣n · 1
n
Ĵ

∣∣∣∣
≈ log f

(
X|θ̂(k)

)
− 1

2
νk logn. (12)

The approximation in (12) is due to the fact that log f(θ(k)) and
(νk/2) log 2π are independent of n, and Ĵ/n = O(1) for the
case where m is fixed while n → ∞. Here, O(1) denotes a term
that tends to a constant as n → ∞. Consequently, invoking the
results in [12] for log-LF (LLF) calculation, ignoring the terms
independent of k and setting νk = k(2m− k), the classical
BIC method is given as

BIC(k) = −2 log f
(
X|θ̂(k)

)
+ νk logn

= 2n(m− k) log
1

m−k

∑m
i=k+1 �i(∏m

i=k+1 �i
) 1

m−k

Q

+ k(2m− k) logn. (13)

Minimizing (13) with respect to k yields the estimate of the
source number. It should be noted that the criterion in (13) can
also be obtained from a different procedure based on the MDL
principle [12], [14], [16].

For m,n→∞ and m/n→c, however, the observed informa-
tion matrix Ĵ depends not only on n but also on m. In such a
situation, the approximation in (12) is no longer valid, which
considerably degrades the performance of the classical BIC
method in (13), particularly when the number of snapshots is
comparable with the number of antennas. To circumvent this
problem, we recalculate the LLF and the PF for m,n → ∞ and
m/n → c, ending up with a new BIC variant that is able to pro-
vide reliable detection of the source number in the large array.

B. Proposed BIC Variant

To correctly compute the a posteriori probability for source
enumeration in the general asymptotic regime, where m,n→
∞ with m/n→c, we first need to determine the ML estimate of
the parameter vector θ(k). It is shown in Appendix A that the
ML estimate ofθ(k) in the general asymptotic situation turns out
to be the same as that in the classical asymptotic case. That is

θ̂
(k)

=
[
eT1 , . . . , e

T
k , �1, . . . , �k, τ̂k

]T
(14)
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is the ML estimate of θ(k) for m,n → ∞ and m/n → c. Here,
τ̂k = (1/(m− k))

∑m
i=k+1 �i. On the other hand, it is indicated

in Appendix B that, as m,n → ∞ and m/n → c, the logarithm
of the a posteriori probability can be computed as

log f(Hk|X) ≈ log f
(
X|θ̂(k)

)
+ log f

(
θ̂
(k)
)

+ νk log π − 1
2
log |Ĵ |. (15)

It is pointed out in [22] that, to determine the asymptotic behav-
ior of the sample eigenvectors, it cannot make any sense to
characterize the behavior of the subspace determined by the
eigenvectors as their dimension infinitely increases as m → ∞.
Instead, it is interesting to determine the behavior of the quad-
ratic function of the eigenprojection matrix. Similarly, it makes

little sense to discuss the parameter vector θ̂
(k)

alone since
its dimension infinitely increases as m → ∞. As a result, we

consider the function of θ̂
(k)

in (15), which, when maximized,
has the effect of maximizing the detection probability for source
number detection.

Recall that f(θ̂
(k)

) stands for the a priori pdf of the param-

eter vector θ̂
(k)

, which is bounded as n → ∞. In the sequel,

log f(θ̂
(k)

) is much less than (1/2) log |Ĵ | because the latter
increases without bound for m → ∞ or n → ∞. On the other
hand, νk log π is also much less than (1/2) log |Ĵ | as m,n →
∞ and m/n → c. Hence, it follows from (15) that

−2 log f(Hk|X) ≈ −2 log f(X|θ̂(k)
) + log |Ĵ | (16)

which, when minimized with respect to k, is able to yield a
reliable estimate of the source number, provided that

log f(X|θ̂(k)
) and log |Ĵ | can be correctly calculated for

m,n → ∞ and m/n → c. Since θ̂
(k)

=[eT1 , . . . , e
T
k , �1, . . . ,

�k, τ̂k]
T is the ML estimate of θ(k) for m,n → ∞ and

m/n → c, using the similar derivation in [12], the LLF is
computed as

−2 log f
(
X|θ̂(k)

)
=2n(m−k) log

1
m−k

∑m
i=k+1 �i(∏m

i=k+1�i
) 1
m−k

. (17)

On the other hand, it follows from (B.4) that the determinant
of Ĵ is

|Ĵ | = (m− k)n

τ̂2k
|Q| (18)

where

Q =

[
Q11 Q12

Q21 Q22

]
(19)

with Q11, Q12, Q21, and Q22 being defined in (B.8). Utilizing
the formula for the determinant of partitioned matrices, we
obtain

|Q| = |Q11| ×
∣∣Q22 −Q21Q

−1
11Q12

∣∣ . (20)

Substituting (B.8) into (20) yields

|Q| = (2n)mknk

(
k∏

i=1

1
�i

)m−k+2

τ̂
(m−k)k
k (21)

TABLE I
SUMMARY OF PROPOSED BIC ALGORITHM

which, when substituted into (18), leads to

|Ĵ |=(m−k)n · (2n)mk · nk ·
(

k∏
i=1

1
�i

)m−k+2

· (τ̂k)k(m−k)−2.

(22)

Taking the logarithm of (22), we have

log |Ĵ | = log [(m− k)n] +mk log(2n) + k log n

+ (m− k + 2) log

(
k∏

i=1

1
�i

)
+ (k(m− k)− 2) log τ̂k

= m

[
k log(2n) +

log [(m− k)n]

m
+

k logn

m

+

(
1 − k − 2

m

)
log

(
k∏

i=1

1
�i

)

+

(
k − k2 + 2

m

)
log τ̂k

]
. (23)

Recall that m,n → ∞ while the presumed source number
k can be taken as a fixed number. Consequently, we obtain
[log((m− k)n)]/m → 0, (k logn)/m → 0, (k − 2)/m → 0,
and (k2 + 2)/m → 0 for m,n → ∞ and m/n → c. It follows
that, as m,n → ∞ and m/n → c, (23) is approximated as

log |Ĵ | ≈ m

[
k log(2n) + log

(
k∏

i=1

1
�i

)
+ k log τ̂k

]

= mk

(
log(2n)− 1

k

k∑
i=1

log
�i
τ̂k

)
� P(k,m, n). (24)

Therefore, substituting (17) along with (24) into (16), the
proposed BIC variant is

BICv(k) = 2n(m− k) log
a(k)

g(k)
+ P(k,m, n) (25)

where a(k) = (1/(m− k))
∑m

i=k+1 �i and g(k) =

(
∏m

i=k+1 �i)
1/(m−k) are the arithmetic mean and the geometric

mean, respectively. The source number is estimated as

d̂ = arg min
k=0,...,m̄−1

BICv(k). (26)

Recall that m̄ < min(m,n), with m̄ being the maximum pre-
sumed source number, which is fixed as m,n → ∞ and
m/n → c. Since a pair of mutually transposed matrices shares
a common set of nonzero eigenvalues up to a nuisance constant
multiplication factor [30], the numbers of antennas m and
samples n play symmetric roles. This implies that for m > n,
we can swap m and n when applying the proposed BIC variant
on the n nonzero eigenvalues. The proposed BIC algorithm is
tabulated in Table I.
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Fig. 1. Histogram plots for source enumeration. [ϕ1, ϕ2] = [2◦, 6.5◦] for Fig. 1(a), [ϕ1, ϕ2, ϕ3] = [2◦, 6.5◦,−3◦] for Fig. 1(b), and [ϕ1, . . . , ϕ8] =
[2.5◦, 22◦,−4.9◦, 12.3◦, 7.3◦, 16.7◦,−9.6◦, 26.7◦] for Fig. 1(c) and (d). The signals are of equal power. (a) m = 10, n = 80, SNR = −3 dB, and d = 2.
(b) m = 10, n = 80, SNR = 5 dB, and d = 3. (c) m = 20, n = 60, SNR = −3 dB, and d = 8. (d) m = 20, n = 200, SNR = −5 dB, and d = 8.

Remark: Recall that �1, . . . , �k, are the ML estimates of the
signal population eigenvalues. In the sequel, �1/τ̂k, . . . , �k/τ̂k,
are relative to the SNR. This, in turn, indicates that P(k,m, n)
depends not only on the number of snapshots n but also on
the number of antennas m as well as SNR. That is to say,
the PF P(k,m, n) employs more information than that in the
standard BIC [12], [28], leading to accurate computation of the
PF, particularly for m,n → ∞ and m/n → c.

IV. PERFORMANCE ANALYSIS

Here, we derive the analytical formula for the probability of
missed detection and prove that the probability of false alarm
converges to zero in the general asymptotic regime.

A. Approximate Probabilities of Missed Detection and
False Alarm

The statistical analysis for the performance of the classical
MDL method has been widely conducted in the literature [31]–
[35]. In fact, in this multiple-hypothesis test, there are two error
types, namely, the probabilities of underestimating and overes-

timating the source number. They are also known as the proba-
bility of missed detectionPmd and the probability of false alarm
Pfa, respectively. Pmd and Pfa for d sources are, respectively,
defined as

Pmd = Prob(d̂ < d|Hd) (27a)

Pfa = Prob(d̂ > d|Hd). (27b)

It has been well justified in [31]–[33] by Monte Carlo experi-
ments that the probability of missed detection can be approxi-
mated by the probability of underestimating the source number
by one, whereas the probability of false alarm can be approxi-
mated by the probability of overestimating the source number
by one. That is

Pmd ≈ Prob(d̂ = d− 1|Hd) (28a)

Pfa ≈ Prob(d̂ = d+ 1|Hd). (28b)

Computer simulation has been carried out to verify the ap-
proximations in (28) for the proposed BIC variant in terms of
the histogram of the estimated source number. Fig. 1 plots the
histogram bars for source enumeration in four representative
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parameter settings. That is, Fig. 1(a) provides the histogram for
m=10, n=80, d=2, and SNR=−3 dB; Fig. 1(b) gives the
histogram for m=10, n=80, d=3, and SNR=5 dB; Fig. 1(c)
shows the histogram for m=20, n=60, d=8, and SNR=
−3 dB; whereas Fig. 1(d) shows the histogram for m = 20,
n = 200, d = 8, and SNR = −5 dB. Throughout this paper, the
SNR is defined as 10 log10(σ

2
si
/τ) with σ2

si
� E[|si(t)|2] and

τ = 1. It is indicated in Fig. 1 that the proposed BIC variant
tends to underestimate the source number, and the probability
of underestimating the source number by one dominates. More-
over, compared with the classical BIC scheme, the proposed
scheme considerably improves in terms of the probability of
missed detection. Furthermore, the probability of false alarm
is negligible. Indeed, it is proved in Appendix C that Pfa of
the proposed BIC variant converges to zeros as m,n → ∞ and
m/n → c. This will also be verified by the simulation results
in Section V-B. Recall that Prob(d̂ = d|Hd) + Pmd + Pfa = 1.
Therefore, it is sufficient to determine Pmd for the proposed
BIC method to evaluate its detection performance in the general
asymptotic regime.

B. Analytic Probability of Missed Detection

Noticing that

a(d− 1) =
m− d

m− d+ 1
a(d) +

�d
m− d+ 1

(29)

[g(d− 1)]m−d+1 = [g(d)]m−d · �d (30)

we obtain

(m− (d− 1)) log
a(d− 1)
g(d− 1)

= log

⎛
⎜⎜⎜⎝ [a(d)]m−d

[g(d)]m−d
×

(
m−d

m−d+1 +
�d

a(d)

m−d+1

)m−d+1

�d
a(d)

⎞
⎟⎟⎟⎠

= (m− d) log
a(d)

g(d)
+ logQm

[
�d
a(d)

]
(31)

where

Qm

[
�d
a(d)

]
�

[
1 + 1

p

(
�d

a(d) − 1
)]p

�d
a(d)

(32)

with p � m− d+ 1. Recalling that τ̂d−1 = a(d− 1) and τ̂d =
a(d), it is easy to obtain

P(d,m, n)− P(d− 1,m, n)

= m log(2n)−m

(
d∑

i=1

log
�i
τ̂d

−
d−1∑
i=1

log
�i

τ̂d−1

)

= m log(2n)−m log
�d
τ̂d

−m(d− 1) log
τ̂d−1

τ̂d

= m log(2n)−m log
�d
a(d)

−m(d− 1) log

×
[

1 +
1
p

(
�d
a(d)

− 1

)]
. (33)

Therefore, as m,n → ∞ and m/n → c, the probability of
missed detection is calculated as

Pmd ≈ Prob (BIC(d− 1,m, n)− BIC(d,m, n) < 1|Hd)

= Prob

(
logQm

[
�d
a(d)

]
<

m

2n
log (2n)− m

2n
log

�d
a(d)

− m(d− 1)
2n

log

(
1 +

1
p

(
�d
a(d)

− 1

))∣∣∣∣Hd

)
≈ Prob

((
p+

c(d− 1)
2

)
log

(
1 +

1
p

(
�d
a(d)

− 1

))
−
(

1 − c

2

)
log

�d
a(d)

<
c

2
log (2n)

∣∣∣∣Hd

)
= Prob

(
�d
a(d)

< f−1(α)

∣∣∣∣Hd

)
(34)

where α = c/2 log (2n), and f−1(z) is the inverse function of

f(z)=

(
p+

c(d−1)
2

)
log

(
1+

z−1
p

)
−
(
1− c

2

)
log z (35)

with z = �d/a(d). Note that the last equality in (34) is due to the
fact that f(z) is a monotonic increasing function for c > 0 and
z > 1. The function f−1(z) can be determined by the numerical
simulation. Now, we need to determine the distribution of
�d/a(d).

It is well known that, as m,n → ∞ with m/n → c, the
signal eigenvalues λi(i = 1, . . . , d) are probably lower than the
critical value τ(1 +

√
c), namely, the so-called asymptotic limit

of detection due to the phase transition phenomenon [36]. In
such a situation, the signal sample eigenvalue behaves similar to
the noise sample eigenvalue. Note that analyzing the detection
threshold for the source enumerator is also an interesting topic.
It is shown in [8] that the threshold of the RMT detector can
be as low as the asymptotic limit of detection when m,n →
∞ with m/n → c. Moreover, it is revealed in [37] that the
asymptotic probability of detection for the likelihood ratio test
can approach one even when the signal power is substantially
lower than the asymptotic limit of detection. Additionally, the
consistency of the classical BIC method with respect to the
SNR has been investigated in [10] and [15]. However, these top-
ics are beyond the scope of this paper. Consequently, we restrict
our attention on the analytic probability of missed detection.

If λd > τ(1 +
√
c) and λd has multiplicity of one, it then

follows from [25], [36], and [38] that, as m,n → ∞ with
m/n → c, �d is Gaussian distributed, i.e.,

√
n

(
�d−λd

(
1+

τc

λd−τ

))
D−→ N

(
0, λ2

d

(
1− c

(λd−τ)2

))
(36)

where
D−→ denotes convergence in distribution. Although this

asymptotic result is correct in the general asymptotic regime, it
is not accurate enough for finite m and n because it does not
consider the interaction between the signals. In fact, it is veri-
fied in [22] that, as m,n → ∞ with m/n → c, �d almost surely
(a.s.) converges to its mean derived by Lawley [39] in the
classical asymptotic regime, that is

μd = λd

⎛
⎝1 − c

m

∑
1≤i�=d≤m

λi

λi − λd

⎞
⎠ . (37)
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Fig. 2. CDF: Asymptotic distribution versus simulation for three sources with
power values of [−12, −17, −15] dB and DOA = [−2.5◦, 3.3◦, 12◦]. 105

trials. (a) m = 200 and n = 800. (b) m = 100 and n = 1000.

As a matter of fact, (37) can be rewritten as

μd = λd

(
1 − c

m

d−1∑
i=1

λi

λi − λd
+

m− d

m

τc

λd − τ

)
(38a)

m→∞−−−→ λd

(
1 +

τc

λd − τ

)
. (38b)

Note that the second term within the brackets of (38a) stands
for the interaction between the signals. It is implied in (38) that,
although the mean of �d in (37) is the same as that in (36) as
m,n → ∞ with m/n → c, the former is more accurate than the
latter for finite m and n because it takes into account the inter-
action between the signals. As a consequence, the fluctuation
of �d is

�d
D−→ N

(
μd, σ

2
d

)
(39)

with σ2
d = (λ2

d/n)(1 − c(λd − τ)−2). To quantitatively show
the approximation accuracy between (36) and (39), we calculate
their cumulative distribution functions (cdfs) and compare them
with the exact distribution of �d resulted from 105 independent
simulation trials. The results shown in Fig. 2 indicate that
the asymptotic distribution in (39) is more accurate than that
in (36). On the other hand, by taking into account the bias

resulting from �i (i = 1, . . . , d), it follows from [31] and [35]
that a(d) ≈ �d with

�d = τ − 1
n(m− d)

d∑
i=1

∑
1≤j �=i≤m

λiλj

(λi − λj)
. (40)

Thus, the fluctuation of z is

z
D−→ N

(
μz, σ

2
z

)
(41)

where μz = μd/�d, and σ2
z = σ2

d/�
2
d. The analytic probability

of missed detection is

Pmd = 1 −Q

(
f−1(α) − μz

σz

)
(42)

for λd > τ(1 +
√
c), where Q(x) =

∫∞
x (1/

√
2π)e−t2/2dt. For

λd ≤ τ(1 +
√
c), however, the signal cannot be reliably de-

tected due to the phase transition phenomenon. In the sequel,
we have Pmd = 1.

V. SIMULATION RESULTS

A. Detection Performance

The detection performance of the proposed BIC variant is
evaluated by computer simulation in this section. For the pur-
pose of comparison, the empirical results of the representative
ITCs are also presented, that is, the BIC [13], [28], linear-
shrinkage-based MDL (LS-MDL) [40], EEF [41], RMT-AIC
[25], and BN-AIC [42]. According to [42], the user-defined pa-
rameter C in the BN-AIC scheme is set to 2. Similar to the
setting in the last section, we consider a uniform linear array
with half-wavelength element separation receiving the narrow-
band and equal-power stationary Gaussian signals.

The empirical probabilities of correct detection versus SNR
for a relatively small sample size of n = 60 are plotted in
Fig. 3(a), where the number of antennas is 15. We observe
that the proposed BIC variant is superior to the other ITCs in
terms of detection probability. When the number of snapshots
is larger, e.g., n = 150, the gaps between the proposed BIC va-
riant and existing ITCs become narrower, as demonstrated in
Fig. 3(b). In such a large sample case, the proposed method is
comparable with the EEF scheme and still outperforms the LS-
MDL and RMT-AIC approaches by around 0.5 dB. Moreover,
the proposed detector significantly improves compared with
the standard BIC scheme. To study the behavior of the BIC
variant for different angle separations, the empirical probabil-
ities of correct detection versus the angle separation are shown
in Fig. 4 for the small and large sample sizes, respectively.
Here, the DOAs due to the three incident signals are set as
[0,Δϕ, 2Δϕ], and the number of antennas is 15. It is seen
that the BIC variant is more accurate than the existing ITCs
in source enumeration, particularly for the small sample case.
It is easy to interpret the improvement of the proposed BIC
variant by recalling that the standard BIC suffers from its heavy
penalty term. That is, its probability of underestimating the
source number dominates. As the proposed BIC offers a smaller
penalty term than the standard BIC, it is able to reduce the
possibility of underfitting, eventually leading to the significant
enhancement in detection performance.
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Fig. 3. Probability of correct detection versus SNR. m = 15, d = 3, [ϕ1, ϕ2,
ϕ3] = [2.3◦, 7.5◦, 12◦], and 2 × 103 trials. (a) n = 60. (b) n = 150.

To investigate the general asymptotic case, we enable both
m and n to increase at the same speed, e.g., m/n = 1/3 and
m/n = 0.5. Since the number of antennas and the number of
snapshots can infinitely increase while the source number re-
mains unchanged, we set m̄ = min(20,m) for all algorithms in
the following simulations, where m and n increase at the same
rate c = m/n. The empirical results shown in Fig. 5(a) indicate
that the EEF and LS-MDL schemes are more accurate than the
standard BIC detector while all of them are able to yield the
consistent estimate of source number when the number of snap-
shots becomes large enough. Compared with the existing ITCs,
the proposed BIC approach is capable of yielding more accurate
estimate of source number. When m/n=0.5 and d=8, the pro-
posed scheme converges to one in probability of correct detec-
tion much faster than the other ITCs, as indicated in Fig. 5(b).

To confirm that the probability of false alarm of the proposed
BIC approach tends to zero as m,n→∞ and m/n→c, the em-
pirical probability of false alarm versus the number of antennas
is shown in Fig. 6, where m/n = 0.5, and SNR = −8 dB. For
comparison, the empirical results of the EEF and RMT-AIC
approaches are presented as well. Fig. 6(a) corresponds to the
empirical results for three incident signals with DOAs of [2.3◦,
7.5◦, 12◦], whereas Fig. 6(b) shows the empirical results for

Fig. 4. Probability of correct detection versus angle separation. m = 15,
SNR = 0 dB, d = 3, [ϕ1, ϕ2, ϕ3] = [0,Δϕ, 2Δϕ], and 2 × 103 trials.
(a) n = 60. (b) n = 150.

eight incident signals with DOAs of [ϕ1, . . . , ϕ8] = [2.5◦, 22◦,
−4.9◦, 12.3◦, 7.3◦, 16.7◦,−9.6◦, 26.7◦]. It is seen that the ITCs
offer different probabilities of false alarm. On the other hand,
Fig. 6 implies that the probability of false alarm of the proposed
BIC algorithm converges to zero as m,n → ∞ and m/n → c,
which is in line with the theoretical analysis in Section IV-A.

To fairly compare the ITCs with the threshold-like testing
methods, we need to set their probabilities of false alarm at
the same level. Nevertheless, as indicated in Fig. 6, the ITCs
implicitly offer different probabilities of false alarm. As a re-
sult, the threshold-like testing method should be compared with
one of the ITCs at the same probability of false alarm. In the
end, the empirical results of the proposed BIC variant and RMT
approach [8] are plotted in Fig. 7. Here, the probability of false
alarm of the RMT algorithm is equal to that of the proposed BIC
approach. Moreover, to enable the RMT method to properly
work, we set its probability of false alarm to 10−6 when the
probability of false alarm of the proposed BIC variant is equal
to zero. In addition, note that the minimax [43] approach is also
a threshold-like algorithm, but it directly links the noise sample
eigenvalue distribution, namely, the Tracy–Widom law [44], to
the signal sample eigenvalue distribution, ending up with an
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Fig. 5. Probability of correct detection versus number of snapshots. 2 × 103

trials. (a) d=3, m/n=1/3, and [ϕ1, ϕ2, ϕ3]=[2.3◦, 7.5◦, 12◦]. (b) d=8, m/
n=0.5, and [ϕ1, . . .,ϕ8]=[2.5◦, 22◦,−4.9◦, 12.3◦, 7.3◦, 16.7◦,−9.6◦, 26.7◦].

elegant method for threshold calculation. See [43, eq. (10)]
for the details. As a result, the empirical results for the min-
imax scheme are presented as well. Similar to [43], the “in-
clusion” penalty and the “exclusion” penalty are set as cI =
cE(1) = · · · = cE(m) with λ0 =

√
c+ n−1/3 and τ̂k = (m−

k)−1
∑m

i=k+1 for the kth threshold calculation. It is indicated
in Fig. 7 that the proposed BIC variant is superior to the RMT
scheme in detection accuracy and outperforms the minimax
approach in consistency. Although the proposed BIC variant
might not be as accurate as the minimax method, as shown
in Fig. 7(b), it is able to attain correct detection probability
of one in these two cases. On the other hand, it should be
noted that the minimax algorithm relies on the Tracy–Widom
distribution, which cannot be evaluated online, incurring more
overhead in the procedure of detection.

B. Accuracy of Analytic Probability of Missed Detection

Here, numerical results are presented to evaluate the accuracy
of the analytic probability of missed detection, which is derived
in Section IV-B. To evaluate the accuracy of the analytic prob-
ability of missed detection for large arrays and large samples in
large-array applications, we set the number of antennas as m =

Fig. 6. Probability of false alarm versus antenna number for the proposed,
EEF, and RMT-AIC approaches. SNR = −8 dB, m/n = 0.5, and 2 × 105

trials. (a) [ϕ1, ϕ2, ϕ3] = [2.3◦, 7.5◦, 12◦]. (b) [ϕ1, . . . , ϕ8] = [2.5◦, 22◦,
−4.9◦, 12.3◦, 7.3◦, 16.7◦,−9.6◦, 26.7◦].

50 and vary the number of samples from n = 300 to n = 1000.
Fig. 8 indicates that the analytic probability of missed detection
is very close to the simulated probability of missed detection.
This, in turn, implies that our derived analytic probability of
missed detection is able to accurately predict the detection
performance.

VI. CONCLUSION

This paper has devised a new BIC variant for source enu-
meration in the general asymptotic regime, which enables us
to correctly determine the signal and noise subspaces for the
subsequent DOA estimation and beamforming in large-array
systems. As the existing information criteria only consider the
condition when the number of antennas remains unchanged
while the number of snapshots tends to infinity, they cannot pro-
vide accurate detection of the source number for the large array.
By correctly determining the Hessian matrix in the calculation
of the PF, we have derived an efficient BIC variant for the gene-
ral asymptotic regime. Moreover, a closed-form formula has
been derived for calculating the probability of missed detection,
and the probability of false alarm has been proved to converge
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Fig. 7. Probability of correct detection for the proposed BIC, RMT, and min-
imax algorithms at the same probability of false alarm. d = 3, [ϕ1, ϕ2, ϕ3] =
[2.3◦, 7.5◦, 12◦], and 2 × 103 trials. (a) m = 50 and n = 80. (b) SNR =
−12 dB and m/n = 0.2.

to zero as m,n → ∞ and m/n → c. Simulation results have
verified the superiority of the proposed BIC approach over its
existing counterparts and confirmed the statistical performance
analysis.

APPENDIX A
MAXIMUM ESTIMATION OF θ(k) IN THE

GENERAL ASYMPTOTIC CASE

For the case of k sources, let R(k) = UΛUH and R̂ =
ELEH be the eigenvalue decompositions of R(k) and R̂, re-
spectively. Here, Λ = diag(λ1, . . . , λk, τ, . . . , τ), U = [u1,
. . . ,um], L=diag(�1, . . . , �m), and E=[e1, . . . , em], with ui

and ei, i = 1, . . . ,m being the population and sample eigen-
vectors corresponding to the population and sample eigenvalues
λi and �i, respectively. As a result, the LLF is calculated as

L
(
θ(k)
)

� −n log
∣∣∣R(k)

∣∣∣− ntr

[(
R(k)

)−1

R̂

]
−mn log π

= −n

(
k∑

i=1

logλi + (m− k) log τ

)
− ntr(Λ−1GHLG)−mn logπ (A.1)

Fig. 8. Probability of missed detection versus SNR. m = 50 and 2 × 103 tri-
als. (a) d = 3 and [ϕ1, ϕ2, ϕ3] = [−2.5◦, 3.3◦, 12◦]. (b) d = 8 and [ϕ1, . . . ,
ϕ8] = [−2.5◦, 4.3◦, 2.3◦,−12◦, 8.1◦, 16.8◦,−23.7◦, 32.1◦].

where tr[·] denotes the trace operator, and G = EHU . Since
G is orthogonal, we have the following inequality [45], [46]:

tr(Λ−1GHLG) ≥
m∑
i=1

�i
λi

. (A.2)

This equality in (A.2) holds for G=Im [46], i.e., U=E. Con-
sequently, it follows from (A.1) and (A.2) that ei, i=1, . . . ,m,
is the ML estimate of ui. That is, ûi=ei for i=1, . . . , k. Sub-
stituting these ML estimates into (A.1), we obtain the LLF rely-
ing on the reduced parameter vector ϑ(k)=[λ1, . . . , λk, τ ], i.e.,

L
(
ϑ(k)

)
= −n

(
k∑

i=1

logλi + (m− k) log τ

)

− n

(
k∑

i=1

�i
λi

+

∑m
i=k+1 �i

τ

)
−mn log π. (A.3)

Maximizing L(ϑ(k)) with respect to ϑ(k) yields the ML esti-
mates of λ1, . . . , λk, τ , which are given as

λ̂i = �i, i = 1, . . . , k (A.4)

τ̂k =
1

m− k

m∑
i=k+1

�i. (A.5)
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Thus, the ML estimate of θ(k) is θ̂
(k)

= [eT1 , . . . , e
T
k , �1, . . . ,

�k, τ̂k]
T for the general asymptotic case, which is the same as

that in the classical asymptotic situation.

APPENDIX B
DERIVATION OF (15)

It follows from [47, eq. (92)] that the Taylor series expansion

of log f(X|θ(k)) around θ̂
(k)

is given in (B.1). Here, Δθ =

θ − θ̂, Ĵ is the Hessian matrix defined in (10), and the super-
script (·)(k) has been dropped for simplicity. We are now at a
position to prove that the zero-order term is much larger than
the second-order term in (B.1) as m,n → ∞ and m/n → c

log f(X|θ) = log f(X|θ̂) + (θ − θ̂)H
∂ log f(X|θ)

∂θ

∣∣∣∣
θ=θ̂︸ ︷︷ ︸

=0

+
1
2
(θ−θ̂)H

[
∂2 log f(X|θ)

∂θ∂θH

∣∣∣∣
θ=θ̂

]
(θ−θ̂)+· · ·

= log f(X|θ̂)− 1
2
ΔθH ĴΔθ + · · · . (B.1)

Recall that θ̂ = [eT1 , . . . , e
T
k , �1, . . . , �k, τ̂k]

T
is the ML esti-

mate of θ in the general asymptotic regime. Exploiting the sim-
ilar computation in [12], the zero-order term of (B.1) is

log f(X|θ̂) = −n(m− k) log
1

m−k

∑m
i=k+1 �i(∏m

i=k+1 �i
) 1

m−k

. (B.2)

To determine the second-order term of (B.1), we need to cal-
culate the second-order partial derivative of − log f(X|θ) with
respect to θ, which is provided in (B.3), shown at the bottom of
the page. Accordingly, the Hessian matrix is calculated as (B.4),
shown at the bottom of the page. To proceed, the following re-
sults are needed. Ifλi>τ(1+

√
c)(i=1, . . . , k) andλi has multi-

plicity 1, as m,n→∞ with m/n→c, it follows from [38] that

�i = λi +
λiτ

λi − τ
c+O

(
1√
n

)
(B.5a)

τ̂k = τ +O
(

1
n

)
. (B.5b)

On the other hand, under the same conditions and as m,n→∞
with m/n→c, it is indicated in [38], [48], and [49] that the inner
product of the largest sample and population eigenvectors con-
verges almost surely to a deterministic value, which is given as

uH
i ei

a.s.−→
1 − cτ2

(λi−τ)2

1 + cτ
λi−τ

, (i = 1, . . . , k). (B.5c)

Consequently, setting Δθ � [εT ,νT , ε]T , where

ε =
[
(u1 − e1)

T , . . . , (uk − ek)
T
]T

(B.6a)

ν = −τc

[
λ1

λ1 − τ
, . . . ,

λk

λk − τ

]T
+O

(
1√
n

)
(B.6b)

ε = O
(

1
n

)
(B.6c)

−∂2 log f(X|θ)
∂θ∂θH

=

⎡
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. . .
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. . .
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. . .
2nvH

k R̂vk

λ3
k

− n
λ2
k

0
...
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0 · · · 0 0 · · · 0
2n
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H
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.3)

Ĵ = − ∂2 log f(X|θ)
∂θ∂θH

∣∣∣∣
θ=θ̂

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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�1
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2n
�k
R̂

−2ne1

�1
. . .

−2nek
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...
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−2neH
1
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. . .

−2neH
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�21

. . .
n
�2k

0
...
0

0 · · · 0 0 · · · 0 (m−k)n
τ̂2
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.4)
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the second-order term in (B.1) can be expressed as

1
2
ΔθH ĴΔθ

=
1
2
[εH ,νH , ε]

⎡
⎢⎣

Q11 Q12 0

Q21 Q22

...
0 · · · β

⎤
⎥⎦
⎡
⎣εν
ε

⎤
⎦

=
1
2
(εHQ11ε+εHQ12ν+νHQ21ε+νHQ22ν+ε2β) (B.7)

where

Q11 = blkdiag

(
2n
�1

R̂, . . . ,
2n
�k

R̂

)
(B.8a)

Q12 = blkdiag

(
−2ne1

�1
, . . . ,

−2nek
�k

)
(B.8b)

Q22 = diag

(
n

�21
, . . . ,

n

�2k

)
(B.8c)

β =
n(m− k)

τ̂2
(B.8d)

and Q21 = QH
12. Here, blkdiag(·) denotes the block diagonal

matrix. Substituting (B.6) and (B.8) into (B.7), we can calculate
ΔθH ĴΔθ. In particular, notice that

εHQ11ε =

k∑
i=1

2n

�i
εHi R̂εi (B.9)

with εi=ui−ei and εHi R̂εi=uH
i R̂ui−uH

i R̂ei−eHi R̂ui +

eHi R̂ei. Since e1, . . . , em and u1, . . . ,um span the same ob-
servation space, we assert that, for ui(i = 1, . . . ,m), there is a
nonzero set {αi1, . . . , αim}, such that

ui = αi1e1 + · · ·+ αimem (B.10)

which implies that

uH
i ui = |αi1|2 + · · ·+ |αim|2 = 1 (B.11)

where |αij | denotes the absolute value of αij . It is easy to obtain

uH
i R̂ui = |αi1|2�1 + · · ·+ |αim|2�m (B.12a)

uH
i R̂ei = eHi R̂ui = αii�i (B.12b)

eHi R̂ei = �i. (B.12c)

Therefore, substituting (B.12) into (B.9) yields

εHQ11ε = n

k∑
i=1

⎛
⎝2

m∑
j=1

|αij |2
�j
�i

− 4αii + 2

⎞
⎠ . (B.13a)

Moreover, the second and third terms of (B.7) are given as

εHQ12ν=2n
k∑

i=1

(αii−1)λiτc

�i(λi−τ)
+O(

√
n)=νHQ21ε. (B.13b)

In addition, it is easy to calculate the last two terms of (B.7) as

νHQ22ν = n

k∑
i=1

(λiτc)
2

�2i (λi − τ)2
−O(

√
n) (B.13c)

ε2β = (m− k)O
(

1
n

)
= O(1). (B.13d)

Consequently, substituting (B.13) into (B.7), we attain

1
2
ΔθHĴΔθ=n

k∑
i=1

⎛
⎝ m∑

j=1

|αij|2
�j
�i

+
2(αii−1)λiτc

�i(λi−τ)

+
(λiτc)

2

2�2i (λi−τ)2
−2αii+1

⎞
⎠+O(

√
n). (B.14)

Utilizing �1 ≥ · · · ≥ �m and αii = uH
i ei ∈ [0, 1], we assert

ΔθH ĴΔθ

2mn
≤ 1

m

k∑
i=1

(
�1
�i
+1+

(λiτc)
2

2�2i (λi − τ)2

)
+O

(
1

m
√
n

)
m,n→∞,m/n→c−−−−−−−−−−→ 0. (B.15)

However, it follows from (B.2) that (1/nm) log f(X|θ̂) is
bounded as m,n→∞ and m/n→c. As a result, as m,n→∞
andm/n→c, by omitting the high-order terms in (B.1), we have

log f(X|θ) ≈ log f(X|θ̂)− 1
2
ΔθH ĴΔθ. (B.16)

On the other hand, assuming that the a priori pdf of θ is flat
around θ̂, we obtain f(θ) ≈ f(θ̂). Substituting this result along
with (B.16) into (9a), we get

f(Hk|X) ≈ f(X|θ̂)f(θ̂)
∫

exp

(
−1

2
ΔθH ĴΔθ

)
dθ

=
πνkf(X|θ̂)f(θ̂)

|Ĵ | 12

×
∫

1

πνk |Ĵ−1| 12
exp

(
−1

2
ΔθH ĴΔθ

)
dθ

︸ ︷︷ ︸
=1

= πνk |Ĵ | 12 f(X|θ̂)f(θ̂). (B.17)

Taking the logarithm of (B.17) eventually leads to (15).

APPENDIX C
PROOF OF Pfa → 0 AS m,n → ∞, AND m/n → c

Similar to (31) and (32), we have

(m−d)log
a(d)

g(d)
=(m−d−1)log

a(d+1)
g(d+1)

+logQm

[
�d+1

a(d+1)

]
(C.1)

where

Qm

[
�d+1

a(d+ 1)

]
=

[
1 + 1

m−d

(
�d+1

a(d+1) − 1
)](m−d)

�d+1

a(d+1)

. (C.2)

Therefore, noticing thata(d+1)≈a(d)≈τ , it follows from (25)
and (C.1) that the probability of false alarm is calculated as

Pfa ≈ Prob (BIC(d+ 1)− BIC(d) < 0|Hd)

= Prob

(
logQm

[
�d+1

a(d+ 1)

]
>

P(d+ 1,m, n)− P(d,m, n)

2n

∣∣∣∣Hd

)
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≈ Prob

(
logQm

[
�d+1

a(d+ 1)

]
>

m

2n
log (2n)− m

2n
log

�d+1

τ

∣∣∣∣Hd

)
. (C.3)

Substituting (C.2) into (C.3) and using a(d+ 1) ≈ τ again, we
can approximate Pfa for the proposed BIC criterion as

Pfa ≈ Prob

(
m log

(
1 +

�d+1/τ − 1
m

)
−
(

1 − c

2

)
log

�d+1

τ
>

c

2
log (2n)

∣∣∣∣Hd

)
≈ Prob

(
�d+1

τ
−
(
1− c

2

)
log

�d+1

τ
>

c

2
log (2n) + 1

∣∣∣∣Hd

)
= Prob

(
�d+1

τ
> g−1

( c
2
log (2n) + 1

)∣∣∣∣Hd

)
(C.4)

where g−1(x) is the inverse function of g(x) = x− (1 −
c/2) log(x), which is a monotonically increasing function for
x ≥ 1. We now need to determine the distribution of �d+1/τ .
As a matter of fact, �d+1 has the similar limiting behavior as
the largest sample eigenvalue of R̂ in the noise-only case [50],
which is described by the following lemma due to [51].

Lemma 1: Let �max be the largest sample eigenvalue of
R̃ ∈ C(m−d)×(m−d) for the noise-only case. The normalized
sample eigenvalue, i.e., �max/τ , is distributed as Tracy–Widom
distribution of order 2. That is

�max

τ − μmn

σmn

D−→ W ∼ FTW2
(C.5)

where μmn = (1 +
√
c)2, σmn = (1 +

√
c)4/3/n

√
c, and

FTW2
(s) = exp

⎧⎨
⎩−

∞∫
s

(u − s)q2(u)du

⎫⎬
⎭ (C.6)

with q(u) being the solution to the nonlinear Painlevé II differ-
ential equation, i.e.,

q′′(u) = uq(u) + 2q3(u). (C.7)

Details concerning the analytical formula of FTW2
(s) can be

found in [51], and the lookup table for the cdf of FTW2
(s) is

available in [52].
As �d+1 asymptotically has the behavior of �max, it follows

from (C.4) and (C.5) that

Pfa ≈ Prob

(
�d+1

τ − μmn

σmn
>

δ − μmn

σmn

)

= 1 − Prob

(
�d+1

τ − μmn

σmn
<

δ − μmn

σmn

)

= 1 − FTW2

(
δ − μmn

σmn

)
(C.8)

where δ = g−1(c/2 log (2n) + 1).
Using [51, App. A1], we assert that q2(u) is monoton-

ically decreasing asymptotic to |u|/2 as u → −∞ and to
e−(4/3)u3/2

/(4π
√
u) as u → ∞. Since g−1(x) is the increasing

function, we obtain δ → ∞ as n → ∞. As a result, it follows
from (C.6) that

lim
s→∞

FTW2
(s) = lim

s→∞
exp

{
−
∫ ∞

s

(u− s)
e−

4
3u

3
2

4π
√
u
du

}

= lim
s→∞

exp

{
−
∫ ∞

s

√
ue−

4
3u

3
2

4π
du

}

× lim
s→∞

exp

{∫ ∞

s

se−
4
3u

3
2

4π
√
u

du

}
. (C.9)

Noting that

−
∫ ∞

s

√
u

4π
e−

4
3u

3
2 du = − 1

6π

∫ ∞

s
3
2

e−
4
3 tdt = −π

8
e−

4
3 s

3
2

→ 0 as s → ∞ (C.10)

0 <

∫ ∞

s

s

4π
√
u
e−

4
3u

3
2 du <

∫ ∞

s

√
u

4π
e−

4
3u

3
2 du =

π

8
e−

4
3 s

3
2

→ 0 as s → ∞ (C.11)

we assert that FTW2
((δ − μmn)/σmn) → 1 as δ → ∞, which,

when substituted into (C.8), establishes that the probability of
false alarm converges to zero as m,n → ∞ and m/n → c.
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[27] P. Djurić, “Asymptotic MAP criteria for model selection,” IEEE Trans.
Signal Process., vol. 46, no. 10, pp. 2726–2735, Oct. 1998.

[28] P. Stoica and Y. Selén, “Model-order selection: A review of information
criterion rules,” IEEE Signal Process. Mag., vol. 21, no. 4, pp. 36–47,
Jul. 2004.

[29] O. E. Barndorff-Nielsen and D. R. Cox, Asymptotic Techniques for Use in
Statistics. New York, NY, USA: Chapman and Hall, 1989.

[30] G. Golub and C. van Loan, Matrix Computations, 3rd ed. Baltimore,
MD, USA: The Johns Hopkins Univ. Press, 1996.

[31] H. Wang and M. Kaveh, “On the performance of signal subspace
processing—Part I: Narrow-band systems,” IEEE Trans. Acoust., Speech,
Signal Process., vol. ASSP-34, no. 5, pp. 1201–1209, Oct. 1986.

[32] Q. T. Zhang, K. M. Wong, P. C. Yip, and J. P. Reilly, “Statistical analysis
of the performance of information theoretic criteria in the detection of
the number of signals in array processing,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 37, no. 10, pp. 1557–1567, Oct. 1989.

[33] W. Xu and M. Kaveh, “Analysis of the performance and sensitivity
of eigendecomposition-based detectors,” IEEE Trans. Signal Process.,
vol. 43, no. 6, pp. 1413–1426, Jun. 1995.

[34] F. Haddadi, M. Malek-Mohammadi, M. M. Nayebi, and M. R. Aref,
“Statistical performance analysis of MDL source enumeration in array
processing,” IEEE Trans. Signal Process., vol. 58, no. 1, pp. 452–457,
Jan. 2010.

[35] J. P. Delmas and Y. Meurisse, “On the second-order statistics of the EVD
of sample covariance matrices: Application to the detection of noncircular
or/and non Gaussian components,” IEEE Trans. Signal Process., vol. 59,
no. 8, pp. 4017–4023, Aug. 2010.

[36] J. Baik, G. B. Arous, and S. Péché, “Phase transition of the largest eigen-
value for nonnull complex sample covariance matrices,” Ann. Probab.,
vol. 33, no. 5, pp. 1643–1697, Sep. 2005.

[37] A. Onatski, M. Moreira, and M. Hallin, “Signal detection in high dimen-
sion: The multispiked case,” arXiv preprint arXiv:1210.5663, 2012.

[38] D. Paul, “Asymptotics of sample eigenstructure for a large dimensional
spiked covariance model,” Statist. Sin., vol. 17, no. 4, pp. 1617–1642,
2007.

[39] D. N. Lawley, “Tests of significance for the latent roots of covariance
and correlation matrices,” Biometrika, vol. 43, no. 1/2, pp. 128–136,
Jun. 1956.

[40] L. Huang and H. C. So, “Source enumeration via MDL criterion based on
linear shrinkage estimation of noise subspace covariance matrix,” IEEE
Trans. Signal Process., vol. 61, no. 19, pp. 4806–4821, Oct. 2013.

[41] C. Xu and S. Kay, “Source enumeration via the EEF criterion,” IEEE
Signal Process. Lett., vol. 15, pp. 569–572, 2008.

[42] B. Nadler, “Nonparametric detection of signals by information theoretic
criteria: Performance analysis and an improved estimator,” IEEE Trans.
Signal Process., vol. 58, no. 5, pp. 2746–2756, May 2010.

[43] P. O. Perry and P. J. Wolfe, “Minimax rank estimation for subspace
tracking,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 3, pp. 504–513,
Jun. 2010.

[44] C. A. Tracy and H. Widom, “On orthogonal and symplectic matrix en-
sembles,” Commun. Math. Phys., vol. 177, no. 3, pp. 727–754, 1996.

[45] L. C. Zhao, P. R. Krishnaiah, and Z. D. Bai, “On detection of the number
of signals in presence of white noise,” J. Mulrivariare Anal., vol. 20,
no. 1, pp. 1–25, Oct. 1986.

[46] J. V. Neumann, “Some matrix inequalities and metrization of matric-
space,” Tomsk. Univ. Rev., no. 1, pp. 286–300, 1937.

[47] K. Kreutz-Delgado, “The complex gradient operator and the CR-
calculus,” Dept. Elect. Comput. Eng., Univ. California, San Diego,
CA, USA, Tech. Rep. Course Lect. Suppl. ECE275A, Sep.–Dec. 2005.
[Online]. Available: http://dsp.ucsd.edu/~kreutz/PEI-05%20Support%
20Files/complex_derivatives.pdf

[48] I. M. Johnstone and A. Y. Lu, “Sparse principal components analysis,”
Stanford Univ., Stanford, CA, USA, Tech. Rep. (ArXiv:0901.4392v1),
2004.

[49] I. M. Johnstone, “High dimensional statistical inference and random ma-
trices,” in Proc. Int. Congr. Math., M. Sanz-Solé, J. Soria, J. Varona,
and J. Verdera, Eds., Zürich, Switzerland, Eur. Math. Soc., 2006,
pp. 307–333.

[50] Z. D. Bai, “Methodologies in spectral analysis of large dimensional
random matrices: A review,” Statist. Sin., vol. 9, no. 3, pp. 611–677,
Aug. 1999.

[51] I. Johnstone, “On the distribution of the largest eigenvalue in princi-
pal components analysis,” Ann. Statist., vol. 29, no. 2, pp. 295–327,
Apr. 2001.

[52] A. Bejan, “Largest eigenvalues and sample covariance matrices,” Tracy–
Widom and Painleve II: Computational Aspects and Realization in S-Plus
With Applications, 2005. [Online]. Available: http://www.cl.cam.ac.uk/
~aib29/MScdssrtnWrwck.pdf

Lei Huang (M’07–SM’14) was born in Guangdong,
China. He received the B.Sc., M.Sc., and Ph.D.
degrees in electronic engineering from Xidian Uni-
versity, Xi’an, China, in 2000, 2003, and 2005,
respectively.

From 2005 to 2006, he was a Research Associate
with the Department of Electrical and Computer
Engineering, Duke University, Durham, NC, USA.
From 2009 to 2010, he was a Research Fellow
with the Department of Electronic Engineering, City
University of Hong Kong, Kowloon, Hong Kong,

and a Research Associate with the Department of Electronic Engineering,
The Chinese University of Hong Kong, Shatin, Hong Kong. From 2011 to
2014, he was a Professor with the Department of Electronic and Information
Engineering, Shenzhen Graduate School of Harbin Institute of Technology,
Shenzhen, China. In November 2014, he joined the Department of Information
Engineering, Shenzhen University, where he is currently a Chair Professor. His
research interests include spectral estimation, array signal processing, statistical
signal processing, and their applications in radar and wireless communication
systems.

Dr. Huang is currently serving as an Associate Editor for the IEEE TRANS-
ACTIONS ON SIGNAL PROCESSING and Digital Signal Processing.

Yuhang Xiao was born in Anhui, China, on January
20, 1992. He received the B.E. degree from Harbin
Engineering University, Harbin, China, in 2012. He
is currently working toward the Ph.D. degree in
communication and information engineering with
the Harbin Institute of Technology.

His research interests are in statistical signal pro-
cessing and spectrum sensing.



3032 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 5, MAY 2016

Kefei Liu received the B.Sc. degree in mathematics
from Wuhan University, Wuhan, China, in 2006 and
the Ph.D. degree in electronic engineering from City
University of Hong Kong, Kowloon, Hong Kong,
in 2013, respectively. His Ph.D. supervisor was
Prof. H.-C. So, and his Ph.D. research topics were
statistical and array signal processing, source enu-
meration, direction-of-arrival estimation, and multi-
linear algebra.

From September 2013 to December 2013, he was
a Research Assistant of Prof. L. Huang with the

Department of Electronic and Information Engineering, Shenzhen Graduate
School of Harbin Institute of Technology, Shenzhen, China. Since January
2014, he has been a Postdoctoral Research Associate with the Department of
Computer Science and Engineering and the Center for Evolutionary Medicine
and Informatics, Biodesign Institute, Arizona State University, Tempe, AZ,
USA. His cooperative supervisor is Prof. J. Ye. His current research interests
are tensor decompositions for machine learning, randomized algorithms for
matrix approximation, and their applications in analysis of massive biomedical
data sets.

Hing Cheung So (S’90–M’95–SM’07–F’15) was
born in Hong Kong. He received the B.Eng. degree
in electronic engineering from City University of
Hong Kong, Kowloon, Hong Kong, in 1990 and
the Ph.D. degree in electronic engineering from
The Chinese University of Hong Kong, Shatin,
Hong Kong, in 1995.

From 1990 to 1991, he was an Electronic Engi-
neer with the Research and Development Division,
Everex Systems Engineering Ltd., Hong Kong. Dur-
ing 1995–1996, he was a Postdoctoral Fellow with

The Chinese University of Hong Kong. From 1996 to 1999, he was a Re-
search Assistant Professor with the Department of Electronic Engineering, City
University of Hong Kong, where he is currently an Associate Professor. His
research interests include statistical signal processing, fast and adaptive algo-
rithms, signal detection, robust estimation, source localization, and sparse
approximation.

Dr. So has been on the Editorial Board of the IEEE SIGNAL PROCESSING

MAGAZINE since 2014, Signal Processing since 2010, and Digital Signal
Processing since 2011 and was on the Editoral Board of the IEEE TRANSAC-
TIONS ON SIGNAL PROCESSING during 2010–2014. In addition, since 2011,
he has been an elected member of the Signal Processing Theory and Methods
Technical Committee of the IEEE Signal Processing Society, where he is
the Chair of the awards subcommittee. He is elected Fellow of the IEEE in
recognition of his contributions to spectral analysis and source localization.

Jian-Kang Zhang (SM’09) received the B.S. degree
in information science (mathematics) from Shaanxi
Normal University, Xi’an, China, in 1983; the M.S.
degree in information and computational science
(mathematics) from Northwest University, Xi’an, in
1988; and the Ph.D. degree in electrical engineering
from Xidian University, Xi’an, in 1999.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
McMaster University, Hamilton, ON, Canada. He
has held research positions at McMaster University

and Harvard University, Cambridge, MA, USA. His research interests are in
the general area of signal processing, digital communication, signal detection
and estimation, and wavelet and time–frequency analysis, mainly emphasizing
mathematics-based new-technology innovation and exploration for a variety of
signal processing and practical applications, and, specifically, number theory
and various linear algebra-based kinds of signal processing. His current re-
search focuses on transceiver designs for multiuser communication systems,
coherent and noncoherent space–time signal, and receiver designs for multiple-
input–multiple-output and cooperative relay communications.

Dr. Zhang is the coauthor of the paper that received the IEEE Signal Process-
ing Society Best Young Author Award in 2008. He has served as an Associate
Editor for the IEEE SIGNAL PROCESSING LETTERS. He is currently serving as
an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING

and the Journal of Electrical and Computer Engineering.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


